Spectrality of digit sets and spectral self-affine measures

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Class of Self-affine and Self-affine Measures

Let I = {φj}j=1 be an iterated function system (IFS) consisting of a family of contractive affine maps on Rd. Hutchinson [8] proved that there exists a unique compact set K = K(I), called the attractor of the IFS I, such that K = ⋃m j=1 φj(K). Moreover, for any given probability vector p = (p1, . . . , pm), i.e. pj > 0 for all j and ∑m j=1 pj = 1, there exists a unique compactly supported proba...

متن کامل

Overlapping Self-affine Sets

We study families of possibly overlapping self-affine sets. Our main example is a family that can be considered the self-affine version of Bernoulli convolutions and was studied, in the non-overlapping case, by F. Przytycki and M. Urbański [23]. We extend their results to the overlapping region and also consider some extensions and generalizations.

متن کامل

Integral Self-affine Tiles in U I. Standard and Nonstandard Digit Sets

We investigate the measure and tiling properties of integral self-affine tiles, which are sets of positive Lebesgue measure of the form T(A,@) = { £ * x A~'d^: all d}€@}, where AeMn(Z) is an expanding matrix with |det (A)| = m, and Qs ^ 2" is a set of m integer vectors. The set Q> is called a digit set, and is called standard if it is a complete set of residues of Z"/A(Z") or arises from one by...

متن کامل

Overlapping Self-affine Sets of Kakeya Type

We compute the Minkowski dimension for a family of self-affine sets on R. Our result holds for every (rather than generic) set in the class. Moreover, we exhibit explicit open subsets of this class where we allow overlapping, and do not impose any conditions on the norms of the linear maps. The family under consideration was inspired by the theory of Kakeya sets.

متن کامل

Uniform Perfectness of Self-affine Sets

Let fi(x) = Aix + bi (1 ≤ i ≤ n) be affine maps of Euclidean space RN with each Ai nonsingular and each fi contractive. We prove that the self-affine set K of {f1, . . . , fn} is uniformly perfect if it is not a singleton.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SCIENTIA SINICA Mathematica

سال: 2017

ISSN: 1674-7216

DOI: 10.1360/scm-2016-0720